воскресенье, 29 июня 2008 г.

СИСТЕМА АККУМУЛЯТОРОВ

Одна из основных проблем использования солнечной энергии для центрального отопления состоит в том, что солнечного тепла достаточно в тот сезон, когда меньше всего требуется отопление. Наоборот, отопление требуется тогда, когда дневное солнечное излучение составляет всего несколько часов. Таким образом, чтобы использовать солнечную энергию тогда, когда она действительно нужна, она должна быть не только собрана, но и сохранена. Совершенная система сохранения солнечной энергии должна работать днем и ночью, летом и зимой.

Тепло, полученное от солнца, может быть использовано также и без аккумулятора, если полученная сумма этого тепла достаточна. Если же потребность в тепле больше, чем может дать солнце, то к солнечному теплу можно добавить энергию от других источников, например нефти (масла). «Краткосрочное» хранилище энергии должно сохранять ее от нескольких часов до нескольких дней, но в этом случае потребуется значительное вспомогательное нагревание.
Использование системы солнечного отопления с кратковременным хранением энергии означает, что около 50—70% этой энергии может быть сэкономлено в зависимости от климатических условий и инженерных конструкций. При долгосрочном хранении энергии излишек тепла, полученного за лето, должен сохраниться для зимы. Аккумулятор может удерживать энергию благодаря увеличению накапливаемого тепла, что является следствием повышения температуры теплоносителя. Полезное тепло, будучи результатом особого рода тепла, в свою очередь, изменяет массу и температуру.

В результате утилизации полезного тепла жидкого или твердого содержимого резервуара внутренняя энергия системы изменяется путем увеличения кинетической и потенциальной энергии молекул вещества, заполняющего резервуар. Увеличение внутренней энергии может быть результатом изменения состояния субстанции, например перехода от жидкого состояния к твердому. В этом случае внутренняя энергия аккумулятора изменяется при помощи эквивалента «скрытого» тепла, который соответствует изменению его состояния (например, скрытое тепло плавления или испарения). Таким образом, тепловые аккумуляторы подразделяются на два типа: открытого и скрытого тепла.







В большинстве стран наиболее дешевым средством аккумулирования тепла является вода. Это дает возможность получить самый высокий уровень тепла. Табл. 9 содержит показатели для различных материалов, заполняющих аккумуляторы, выраженные как специальное тепло, измеренное в ккал/(м3-°С).

Наиболее важными критериями качества в выборе соответствующего типа аккумулятора являются следующие показатели:
сколько тепла, когда и какой температуры должен отдавать аккумулятор;

какие тепловые потери имеют место в период хранения;
какая площадь необходима аккумулятору;
в каких конструкциях должен быть решен аккумулятор для того, чтобы его стоимость была минимальна при данной мощности;
каково соотношение между накопленной и вводимой извне энергией.

ТАБЛИЦА 9. ПОКАЗАТЕЛИ ЗАПОЛНИТЕЛЕЙ ДЛЯ АККУМУЛЯТОРОВ
------------------------------- ккал/(м3-oС)
Кирпичная кладка ------------- 320-360
Бетон -------------------------- 450-600
Песок -------------------------- 308
Камень -------------------------- 475-588
Вода ------------------------------ 1000



Для того чтобы решать проблемы хранения энергии наиболее экономичным способом, что в принципе не так сложно, но пока еще очень дорого, во всем мире ведутся исследования. Примером служит хорошо инсолируемый дом в Швейцарии (400 м над уровнем моря), который требует около 15—22 Гкал энергии в год.

Часть этой энергии может быть запасена зимой с помощью тепловых насосов. Таким образом, согласно расчетам П. Кесселринга, в летний период необходимо запасти для зимы только около 6 Гкал солнечной энергии. Однако специалисты до сих пор не достигли соглашения относительно необходимого объема энергетического резервуара. Работа системы, обеспечивающая ее независимость в период плохой погоды, связана с преобладающими климатическими условиями и изменяется от 6 часов до 10 дней. Естественно, труднее и дороже дождаться двух удовлетворительных дней в Дании, чем десяти таких же на Канарских островах. Тепловые системы, основанные на использовании солнца, дают несколько вариантов хранения тепла. Например, можно использовать воду или насыпную гальку (камень); иногда в качестве средства хранения тепла используют окружающий грунт.

Хранение тепла — всегда относительно дорого стоит.
Для решения проблемы предложены системы, где изолированный объем аккумулятора необязателен. Так, в системах Лефевра, Моргана и Тромба — Мишеля сами конструкции здания сохраняют тепло, благодаря чему стоимость всей солнечной установки существенно снижается. В Японии применяются солнечные установки для горячего водоснабжения, в которых коллекторы сочетаются с аккумуляторами.

Резервуары горячей воды.

Резервуары горячей воды наиболее распространены для накопления энергии. Многие специалисты рассматривают горячую воду как лучшую форму хранения тепла, хотя проблемы коррозии представляют некоторые трудности. Для того чтобы избежать тепловых потерь, водяные резервуары должны быть хорошо изолированы. Иногда используются в качестве хранителя тепла вода и галька (камень) в комбинации. 1 м3 чистой воды сохраняет 1000 ккал/°С.

Температура, при которой вода может быть использована для обогрева, начинается от 70—80°С и кончается при использовании тепловых насосов около 4°С. Согласно исследованиям Фишера, хорошо изолированный односемейный дом с объемом резервуара горячей воды в 200 м3 может сохранить достаточно энергии, накопленной за лето, до зимы, имея в виду непрерывный ввод мощностей осенью, зимой и весной. Используемое тепловое содержимое аккумулятора меньше, чем его объем, поскольку между хранением и использованием происходят теплопотери в окружающую среду. Постоянное время потерь зависит от контролируемых геометрических и материальных параметров, в частности следующих;
объема хранилища и площади поверхности слоя;
толщины изоляции;
определенной температуры жидкости, заполняющей аккумулятор;
теплопроводности изоляционных материалов.

Если определенная сумма тепла достаточна на данный отрезок времени, то возможны различные методы его хранения. Можно использовать небольшой, но хорошо изолированный резервуар или большой аккумулятор с более коротким постоянным временем нагрева, т. е. с более высокими теплопотерями. Вопрос состоит в том, какое решение оптимально. Оптимальность решения проблемы определяется стоимостью самого аккумулятора, а также стоимостью его содержания. Наиболее важны следующие факторы:
стоимость 1 м3 конструкций аккумулятора;
стоимость 1 м3 изоляции;
минимальная допустимая температура;
температурные различия между аккумулятором и окружающей средой; продолжительность периода работы аккумулятора;
количество тепла, пригодного для использования по истечении определенного отрезка времени.

Исходя из перечисленных условий параметры аккумулятора могут быть рассчитаны так, чтобы максимально снизить стоимость установки. По возможности тепло, отдаваемое окружающей среде (потери хранения), должно быть полезным для дома, т. е. сохраняться внутри дома. Также полезно наслаивать хранящееся тепло в трех различных температурных уровнях, которые вместе можно использовать для трех различных целей. Например, бытовая вода (t= 50—80°С), вода для отопления дома в перекрытии пола (t = 30—50°С) и вода (t > 30°С) как вводимая в солнечные коллекторы мощность. В конце осени все три камеры должны нагревать вместе воду до 80 °С, чтобы с началом зимнего сезона использовать вместимость аккумулятора целиком для максимального обеспечения теплом.

Первый «солнечный дом», MIT 1, построенный в Кембридже, США, в 1939 г., накапливал солнечную энергию для зимы. Дом имел жилую площадь 46,5 м2 и водяной резервуар объемом 62 м3 .
На рис. 48—51 показаны различные варианты водяных нагревательных резервуаров.


Аккумуляторы с каменным заполнителем.

Такие дешевые материалы, как камень, крупнозернистый гравий или галька (бетонная или кирпичная), являются хорошими аккумуляторами тепла. Однако эти материалы нуждаются в больших емкостях вследствие незначительного температурного диапазона, который пригоден для обычных плоских солнечных коллекторов или который желателен для высокой эффективности. Хотя стоимость материала незначительна, сам контейнер, пространство, требуемое для хранилища, а также загрузочные и разгрузочные устройства достаточно дороги. Передача тепла при этом обычно очень проста. В аккумуляторы с «твердым материалом» воздух попадает прямо через слои камня или через трубопровод в бетонном хранилище и нагревается или охлаждается (см. гл. 5, рис. 28). Загрузка или разгрузка этих аккумуляторов с постоянно изменяющейся температурой требует устройства автоматического контроля, который мог бы регулировать эту постоянно колеблющуюся систему. Эти аккумуляторы уже исследованы теоретически и экспериментально во всем мире (рис. 52—55).

Обладая 30%-ной пористостью при трехслойной загрузке, камень в отличие от воды заполняет лишь треть объема аккумулятора. Часто аккумуляторы с каменным заполнением требуют в четыре раза большего объема, чем водяные резервуары той же мощности. Камни обычно имеют диаметр 5 см и менее. 1 м3 камней может сохранить около 400 ккал-°С.

В 1945 г. Джорж Д. Лёф построил первый «солнечный дом» («Валунный дом» в Колорадо), в котором тепловой запас обеспечивался 8 т гравия объемом около 5 м3.


Химические аккумуляторы.

В 1944 г. проф. Мария Тел-кес из Делаварского университета создала систему солнечного аккумулятора, используя глауберову соль (Na2SO.r ЮН20). При повышении температуры с 27 до 38° С соль способна аккумулировать по крайней мере в восемь раз больше тепла, чем тот же самый объем воды выше той же температурной шкалы. Глауберова соль плавится при температуре 38° С, и поглощенное тепло вновь уходит на ее отвердение.

Стоимость такого аккумулятора выше, чем водяного, но экономия достигается за счет объема и изоляционных материалов. Глауберова соль не изменяется в объеме и не нуждается в обновлении. Дом Пибоди в Довере (США), построенный между 1944 и 1948 г., с аккумуляторами на глауберовой соли, нагреется за 6— 10 дней, аккумулируя солнечную энергию.

В 1961 г. Мария Телкес провела экономические расчеты для среднего дома с 75 600 ккал накопленного тепла. Данные приведены в табл. 10.
Эти результаты, однако, слишком оптимистичны, так как стоимость единицы объема резервуара для скрытого теплового накопления и для скрытой химической аккумуляции тепла берется одинаковой. Существует еще целый ряд трудностей, которые нужно преодолеть в этой системе, и много других химикатов, которые нужно исследовать. Например, «Филипс» в Аахене отобрал для изучения четырехокисный фтористый калий.






Химические аккумуляторы.

В 1944 г. проф. Мария Тел-кес из Делаварского университета создала систему солнечного аккумулятора, используя глауберову соль (Na2SO.r ЮН20). При повышении температуры с 27 до 38° С соль способна аккумулировать по крайней мере в восемь раз больше тепла, чем тот же самый объем воды выше той же температурной шкалы. Глауберова соль плавится при температуре 38° С, и поглощенное тепло вновь уходит на ее отвердение.

Стоимость такого аккумулятора выше, чем водяного, но экономия достигается за счет объема и изоляционных материалов. Глауберова соль не изменяется в объеме и не нуждается в обновлении. Дом Пибоди в Довере (США), построенный между 1944 и 1948 г., с аккумуляторами на глауберовой соли, нагреется за 6— 10 дней, аккумулируя солнечную энергию.

В 1961 г. Мария Телкес провела экономические расчеты для среднего дома с 75 600 ккал накопленного тепла. Данные приведены в табл. 10.
Эти результаты, однако, слишком оптимистичны, так как стоимость единицы объема резервуара для скрытого теплового накопления и для скрытой химической аккумуляции тепла берется одинаковой. Существует еще целый ряд трудностей, которые нужно преодолеть в этой системе, и много других химикатов, которые нужно исследовать. Например, «Филипс» в Аахене отобрал для изучения четырехокисный фтористый калий.



Важнейшими критериями качества в отборе пригодных химикатов служат:
большая величина теплового запаса на единицу объема;
хорошая теплопроводность в загрузочном и разгрузочном состоянии;
небольшие изменения объема;
химическая устойчивость;
низкая коррозийность;
низкая стоимость.

Для аккумуляторов, которые используют скрытое тепло, применяют гидрированные соли, которые растворяются в воде при кристаллизации и могут при этом брать много тепла. Многие из них имеют низкую стоимость и пригодны частично как «добавки» (см. прил. 1). В качестве аккумулирующих скрытое тепло материалов могут быть использованы различные органические соединения, особенно парафин.

Химические аккумуляторы могут поглощать значительно больше энергии на единицу объема при более низкой температурной шкале, чем просто резервуары. Химические аккумуляторы могут накопить тепла в пять раз больше, чем резервуары с горячей водой того же объема. По сравнению с аккумуляторами с каменным наполнением химические аккумуляторы мощнее в девять раз.

Многие специалисты склонны считать, что будущее за химическими аккумуляторами, но какая система аккумуляции солнечного тепла является лучшей, покажет время. На протяжении нескольких лет уже работает много установок, которые помогут решить эту проблему.

Сабади П.Р.

1 комментарий:

weasel комментирует...

Продаем солнечные батареи, солнечные коллекторы, солнечные водонагреватели и автономные фонари уличного освещения. А также ветрогенераторы и ветряные электростанции. Кроме того, в продаже имеются аккумуляторы резервного питания для ветряных и солнечных электростанций, преобразователи напряжения (инверторы), запасные трубки к солнечным водонагревателям и коллекторам, другие запасные части и аксессуары.

Приглашаем к сотрудничеству дилеров и региональных представителей.

Подробнее - на сайте: http://www.svs-solar.ru